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Chapter 1 Introduction 

 

1.1 Research background 

1.1.1 Engineering design optimization 

Engineering design optimization is the process of finding design candidates with the 

best performance subject to some objective function(s) and constraint(s). The search process is 

done on the design space that has been pre-defined beforehand. Unlike conventional design 

process that relies on the designer experience (draw and build), engineering design now shifts 

to approaches which are less dependent on the designer knowledge, experience, and intuition. 

The approaches include advanced numerical optimization techniques such as evolutionary 

algorithms. The advancement of computing power has also driven the design process to use 

numerical simulations to evaluate the design (e.g., computational fluid dynamics: CFD). The 

marriage between optimization algorithms and numerical simulations gives rise to the field of 

engineering design optimization. 

In the field of fluid machinery, examples include the design optimization of tailless 

aircraft, micromixer, and car-air conditioner, as depicted in Figure 1.1 The objective is to 

minimize the fuel burn (or drag coefficient), for example. The design evaluation is done using 

CFD without having to build and test the real design. The optimization algorithm is thus 

responsible for conducting the process of finding the best performing design. At the end, the 

final design surely needs to be built and tested before entering the market. 

 

 

 

 

 

 

Figure 1.1 Examples of design optimization of fluid machinery [1]. 
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1.1.2 Evolutionary optimization 

Due to the rise of optimization algorithms, the designer’s task is to formulate the 

optimization problem. It includes the definition of design variable(s) 𝒙, objective function(s) 

𝒇(𝒙), inequality constraint(s) 𝒈(𝒙), equality constraint(s) 𝒉(𝒙). This is a crucial task because 

the obtained optimal design highly depends on the problem formulation as follows. 

Minimize        𝑓𝑚(𝒙),                 m = 1,2, … , M;     (1.1) 

subject to       𝑔𝑗(𝒙) ≤ 0,            j = 1,2, … , J;        (1.2) 

                     ℎ𝑘(𝒙) = 0,           k = 1,2, … , K; (1.3) 

                𝑥𝑖
(𝐿) ≤ 𝑥𝑖 ≤ 𝑥𝑖

(𝑈),      i = 1,2, … . . n;  (1.4) 

It basically translates to: “find design variables 𝒙 with the most minimum objective 

functions 𝒇 that meet the criteria given by constraints 𝒈 and 𝒉. When there is only one objective 

function to be minimized, the problem is called single-objective problem. Problems with more 

than one objective function are called multi-objective problems. The real-world application in 

this study focuses on the multi-objective problems. 

For illustrations, consider a car-buying decision problem. In this problem, we want to 

buy a car that is cheap but comfortable. So, the objectives are cost and comfort. However, the 

cars must meet certain criteria such as noise level, CO2 emission, and safety factors. Those are 

standards set by the regulators and treated as constraints. The design variables include the 

shapes, dimensions, and materials of the car. Multiple tradeoff solutions (solution 1, A, B, C, 

and 2) will be obtained in this problem, depicted in Figure 1.2. Solution 1 and 2 correspond to 

the extreme solutions while solution A, B, and C indicate the solutions that balance both 

objectives. They are not superior to each other. The final decision is given to the designer.    

 

Figure 1.2 Car-buying decision problem [2]. 
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 To solve this kind optimization problem (especially multi-objective), researchers have 

been using population-based approaches such as evolutionary algorithm (EA). Unlike gradient 

methods, EAs do not need gradient information which is often difficult to calculate. These 

algorithms are bio-inspired and mimic the process of natural evolution. One of the variants of 

EAs is NSGA-II, a genetic algorithm proposed by Deb et al. [3]. EAs are attractive since they 

can locate the optimal solutions close to global solutions. 

1.1.3 Surrogate modeling 

However, population-based approaches like EA, often need numerous evaluations. In 

other words, numerous designs must be evaluated numerically or by experiments. In the 

numerical optimization where numerical simulation is used (e.g., CFD), the evaluation refers 

to the CFD evaluation of a design. CFD is, most of the time, expensive. One CFD evaluation 

might take minutes, hours, days or even weeks, depending on the fidelity. In the industry, high-

fidelity CFD is preferred to ensure the accuracy, making the use of EAs in engineering design 

intractable. Alternatively, data-driven surrogate models that can cheaply and analytically map 

inputs to outputs are often deployed to replace the expensive evaluations. The idea is to perform 

several design point evaluations using true evaluations (e.g., CFD) and then build the surrogate 

models based on these data. The surrogate models then replace the expensive evaluations in the 

EA optimization process to obtain new (hopefully better performing) designs. These new 

designs can be further used to rebuild the surrogate models and the optimization process repeats 

until one run out of the computational budget. The examples of surrogate models are Kriging 

[4], radial basis function (RBF) [5], support vector machine (SVM) [6], and artificial neural 

network (ANN) [7]. Of them, Kriging is the most popular one, while ANN has not drawn much 

attention. This fact drives us to study its feasibility when combined with an EA. 

1.2 Research objectives 

We propose a surrogate-based optimization method that combines NSGA-II and NN (we 

call it NN+GA). The objectives are to study its efficacy and compare the performance with the 

NSGA-II without surrogates in the test problems and multi-objective transonic airfoil shape 

optimization problems. The use of NN is hoped to cut the number of true evaluations needed 

and reduce the computational time when applied to expensive design optimization problems. 

Furthermore, the comparison with Kriging is performed as additional study at the end. 
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1.3 Thesis structure 

The present thesis is organized into 6 chapters. In chapter 1, the background and the 

objectives of the current research are presented. Chapter 2 explains the basics of the artificial 

neural network (ANN) based surrogate model along with its training procedure and techniques. 

Then, the surrogate-based optimization that combines the ANN-based surrogate model with a 

genetic algorithm (GA) is presented in chapter 3. The method is called NN+GA for combining 

ANN with GA. Chapter 4 presents the application of the proposed method (NN+GA) to the 

known test problems with analytical functions. Then, the application of NN+GA extends to 

real-world optimization problem, presented in chapter 5. The problem to be solved is the multi-

objective aerodynamic shape optimization of transonic airfoils with CFD as its true evaluation. 

Chapter 6 tries to compare the proposed surrogate model with a popular model called Kriging 

for aerodynamic design (the similar problems as in chapter 5). Lastly, the thesis is closed with 

conclusion, reference, and acknowledgment. 
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Chapter 2 Artificial neural network 

2.1 Introduction 

This chapter covers the mathematical background of the artificial neural network (ANN) 

based surrogate model. The training procedure and techniques to construct the surrogate model 

is also covered. The techniques include supervised and unsupervised learning. The supervised 

learning learns from the given sample dataset that has labeled input and output. The 

unsupervised learning, like the clustering technique, works on their own to discover the inherent 

structure of unlabeled data. Both techniques constitute the whole process of building the model. 

2.2 Definition 

Artificial neural network (ANN) is an abstract computational model of the human brain, 

which is a highly complex, nonlinear, and parallel information processing system. ANN 

analytically models the relationship between the input variables 𝒙 =  {𝑥1, 𝑥2, … , 𝑥𝑛}𝑇, where n 

is the dimensionality of the design variables, and the output 𝒇 =  {𝑓1, 𝑓2, … , 𝑓𝑚}𝑇, where m is 

the number of expensive-to-evaluate functions to approximate. 

Artificial neuron is a building block of ANN that acts as an information-processing unit. It 

consists of an adder and an activation function. The former acts as a linear combiner that sums 

the input signals while the latter allows ANN to map nonlinear functions. An externally applied 

bias bk can be applied to the adder. A set of neuron makes up a layer. Each neuron is connected 

to other neurons via links characterized by weight values. Figure 2.1 depicts the whole 

mechanism of the artificial neuron. 

 

Figure 2.1 Mechanism of an artificial neuron. 
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The net of a neuron k can be represented as follows. 

 𝑛𝑒𝑡𝑘 = 𝑥1𝑤𝑘1 + 𝑥2𝑤𝑘2 + ⋯ + 𝑥𝑛𝑤𝑘𝑛 + 𝑏𝑘 (2-1) 

 𝑛𝑒𝑡𝑘 = ∑ 𝑥𝑛𝑤𝑘𝑛

𝑛

𝑖=1

+ 𝑏𝑘 (2-2) 

Then the neuron computes the output yk as a certain function f of netk value as follows. 

 𝑦𝑘 = 𝑓(𝑛𝑒𝑡𝑘) (2-3) 

The function f is called the activation function, e.g., sigmoid, Tanh, ReLU, etc. 

 

2.3 Multilayer perceptron 

2.3.1 Architectures 

The type of neural network being used throughout this study is a multilayer perceptron 

(MLP). MLP is one of the classes of feedforward neural network (FNN), wherein the 

connections between the nodes do not form a cycle. An MLP consists of multiple layers of 

perceptron (at least three): an input layer, an output layer, and hidden layer(s). This study uses 

an MLP with five layers consisting of an input layer, three hidden layers, and an output layer, 

shown in Figure 2.2. 

 

Figure 2.2 Architecture of the multilayer perceptron. 
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 The design variables are fed into the input layer, while the expensive-to-evaluate 

functions are fed into the output layer. The three hidden layers play a vital role to map the input 

to output. It has been reported that three hidden layers of neural network are enough to map any 

highly nonlinear function (e.g., Shen et al. [8]). The activation function being used is 

LeakyReLU activation function, which is the extended version of ReLU activation function. 

The activation functions are embedded to every layer in the hidden layers. ReLU always outputs 

zero in the negative range leading to saturation (also called dying ReLU problem). LeakyReLU 

is preferable since it introduces a new term in the negative region, as expressed below. 

 𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥) (2-4) 

 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥) + 0.01 ∙ min (0, 𝑥)  (2-5) 

2.3.2 Training 

The surrogate model is constructed by learning a set of data samples consisting of input 

x (design variables) and target output t (the true evaluation of objective and constraint functions 

to approximate). A loss function is a measure of how good the model in terms of predicting the 

desired response. One type of loss function that works in regression tasks is mean squared error 

(MSE). MSE loss function 𝐸 bis defined as follows, 

 𝐸(𝒘) = ∑ ‖𝒕𝑗 − 𝒚𝑗‖
2𝐽

𝑗=1 , (2-6) 

where yj is the predicted value vector, tj is the desired response vector, J is the number of 

samples trained in one batch (batch size), and w represents the weight values of the network. 

Equation (2-6) can also be divided by J to obtain the mean value. The learning process is 

conducted by minimizing the loss function by updating the weight values sequentially. The 

weight adjustment is conducted by error back-propagation technique [9] with gradient descent 

method [10].  

The design database is first divided into two sets: training set and validation set. The 

former is used to train the model, while the latter is used to validate the model. This method is 

called cross-validation. In this study, the training and the validation set are randomly chosen 

from the design database with ratio 4:1. Again, the term ‘training’ refers to the process of 

sequentially updating the weight values of the network so that the model can match the training 

data. The training is done in two phases: feedforward and back-propagation. In the feedforward 

phase, the training set is passed into the network. The network with initial random weight values 
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predicts the output. In the backpropagation, gradient descent is used to calculate the slope of 

the function and uses this value to update weight values using the Widrow-Hoff rule as follows, 

 𝑤𝑘,𝑙 ∶= 𝑤𝑘,𝑙 − 𝜂
𝜕𝐸(𝒘)

𝜕𝑤𝑘,𝑙
, (2-7) 

where 𝑤𝑘,𝑙 represents the weight value that connects neuron k in a layer l in the next layer, 𝜂 is 

the learning rate, and 𝐸(𝒘) is the cost function. Adam [11], a gradient based optimizer, is used 

to do the gradient descent task, which is to find a set of weight values w that minimizes the cost 

function 𝐸(𝒘). Specifically, a variant of gradient descent called mini batch gradient descent is 

adopted, in which only a portion of the training set is used at a time to calculate the cost function. 

This portion is called a batch size, which is set to 5% of the training set. The cost function 

calculation is done until all the training set has been used. The average cost function is the 

obtained, and the weight values are updated. 

The validation process only includes the feedforward phase, where the validation set is 

passed into the network to calculate the cost function. As the training progresses, the cost 

function with respect to the training set decreases, while the cost function with respect to the 

validation set eventually increases. This is the sign of overfitting, as depicted in Figure 2.3. The 

training is stopped whenever this sign is observed (early stopping). If not observed, the training 

progresses, indicating an epoch. The maximum epoch is set to 2000.  

 

 

 

 

 

 

Figure 2.3 Early stopping is done whenever the overfitting case is observed. 

 

 

 

 

Cost function 

Validation-set error 

Training-set error 
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2.4 Data treatments  

2.4.1 Standardization 

Prior to every training, data treatments should be done. The first step is called 

standardization. The design variables x and the functions f (objective and constraint functions) 

to approximate are standardized between 0 − 1. To do this, x(L) and x(U) are used as the lower 

and upper boundaries for x, while min(f) and max(f) are the lower and upper boundaries for f. 

This process is reported to speed up the training [12]. 

2.4.2 Duplicates removal 

The next is step is duplicates removal. Euclidean distances between samples in the design 

variable domain are calculated. As the name suggests, if there are two samples that have a 

distance < 0.001, one of them is removed. In other words, samples that are closely similar with 

each other in terms of design variable (similar shapes/dimensions). The distance limitation is 

user-defined and might depend on the optimization problem being solved. This step prevents 

the training put more weights and bias towards the crowded samples. This can also slow down 

the early stopping process by delaying the overfitting.  

2.4.3 Oversampling 

This step is initiated by using K-means algorithm to cluster the samples into K clusters, 

in the x domain. The value of K is chosen using a method called gap statistics [13]. The samples 

are duplicated so that the number of samples allocated to each cluster is evenly distributed. In 

other words, sample points in a less dense cluster region are oversampled. Suppose N is the 

largest number of training data that belong to a cluster and nl is the number of training data that 

belong to l-cluster. The sample points that belong to the l-cluster are duplicated round(N/nl) 

times. This step is thus called oversampling, which is done to delay overfitting as well. 
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Chapter 3 Surrogate-based optimization 

 

3.1 Introduction 

This chapter covers the basics of the core optimizer: genetic algorithm (GA). GA is one 

type of evolutionary algorithm that relies in the evolutionary principles. Their basic operators 

drive the evolutionary search. In the search process, numerous sample evaluations must 

typically be done. In the optimization where the outcome of interest cannot be easily measured 

(expensive evaluations), it is then intractable, if not impossible to use GA. One way to alleviate 

this is to use surrogate models to assist the evaluation in the GA search process. Hence, this 

method is called surrogate-based optimization. The procedures of how to do the surrogate-based 

optimization and how to apply it to a real-world design problem is explained in this chapter. 

 

3.2 Genetic algorithm: NSGA-II 

3.2.1 Definition 

Evolutionary algorithms (EAs) mimic natural evolutionary principles to perform the 

search and optimization procedures. The biological evolution and natural selection emphasize 

good solutions to survive through evolutionary process, as illustrated in Figure 3.1. Human is 

the living example of a species that has undergone evolution. One unique feature of 

evolutionary optimization using EAs is to find and maintain multiple optimal solutions in one 

single optimization run, which is very promising to be used in multi-objective optimization 

problems. This is because the search is performed in a population-based approach, where a 

population of solutions are evaluated per iteration. One of the EAs is called genetic algorithm 

(GA), which was first conceived by John Holland of the University of Michigan, Ann Arbor. 

The development of GA has grown over decades that leads to the birth of NSGA-II (non-

dominated sorting GA – II) by Deb et al. [3]. NSGA-II specializes in solving multi-objective 

optimization problems, although it can also be used to solve single-objective optimization 

problems. This algorithm has drawn much attention due to its simplicity to be applied in wide 

variety of fields and the codes accessibility. This study uses NSGA-II as the core optimizer. 
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Figure 3.1 Illustrations for biological evolution and natural selection process [14]. 

 

3.2.2 Basic operators 

Any GA, including NSGA-II, basically relies on some basic operators to drive the 

evolutionary search. The bio-inspired operators include selection, crossover, and mutation. The 

selection operator (also called reproduction operator) is subject to following tasks: identify good 

solutions in a population, make multiple copies of good solutions and eliminate bad solutions. 

This marks as the feature of exploitation of the existing solutions. The crossover operator and 

the mutation operator are responsible for creating new (and hopefully better) solutions. The 

former relies on the principle of marriage between fit parents, in hoping to reproduce good 

offspring. The latter alters the genetic features of the solutions to find new solutions. The last 

two operators mark the feature of exploration. The most important thing to be kept in mind 

when solving an optimization problem is to keep the balance between exploitation and 

exploration, since we want the optimal solutions to have good proximity and diversity towards 

the global optimums. Further explanation and mathematical backgrounds of these operators are 

out of scope of this study and can be found in a good book by Kalyanmoy Deb [15]. 

The abstract flow is depicted in Figure 3.2. The population is initialized by doing initial 

sampling. The first population is then evaluated. The next step is survival where the fitness is 

assigned to each solution to rank them up. Based on the ranks, the selection process takes place, 

followed by the crossover and mutation process. This genetic procedure produces new solutions 

to be evaluated again, marking one optimization iteration. This iteration is repeated iteratively. 
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Figure 3.2 General flow of a genetic algorithm [16]. 

 

3.3 Combining neural network with NSGA-II (NN+GA) 

3.3.1 The driving idea 

To perform the search in an optimization problem, one must evaluate the solutions. The 

term ‘evaluation’ refers to analytical function, numerical simulation (e.g., CFD) or experiment 

to assign fitness or score to the given solution. In the test problems, analytical functions are 

known and can be evaluated cheaply. However, in expensive problems, rigorous numerical 

simulations must be carried out to evaluate the solution. Since NSGA-II is a population-based 

approach, it is expected to have many solutions to be evaluated. This is not an obstacle when 

the problems only need analytical functions for evaluation. But this is clearly a disadvantage 

when the problems include expensive evaluations, leading to longer computational time. To 

reduce the time for these expensive evaluations, one might consider a surrogate model. In this 

study, a neural network (NN), specifically a multilayer perceptron offers a fast evaluation of 

new unknown solutions based on the model trained using the existing solutions. This leads to 

the idea of combining the NN with NSGA-II (we call it NN+GA). This idea is natural and 

common-sense that has been around for decades. But again, as to my knowledge, few studies 

have considered NN to be integrated with a GA like NSGA-II. 
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3.3.2 General procedure of NN+GA 

The general procedure of NN+GA can be applied to any optimization problem, 

including single or multiple objectives. Since the NN model is a data-driven model, initial 

sampling must be done to get the idea of the objective space. A Latin hypercube sampling 

(LHS) [17] is used to perform the task in the decision space. LHS points are then evaluated 

using true evaluations. An initial NN model is constructed using the initial dataset. After that, 

optimization is carried out using the NSGA-II algorithm with every evaluation being substituted 

by the NN model. Some optimized solutions are found at the end of the optimization by NSGA-

II. The optimized solution(s) on the NN model is(are) then evaluated using true evaluation. We 

call this(these) solution(s) as the infilling point(s). It is noteworthy that only one infilling point 

per iteration is evaluated in single-objective problems, while in multi-objective problems, 

infilling criteria are used to decide the next infilling points to be evaluated. Lastly, the infilling 

point(s) is(are) compiled in a new dataset that will be used to retrain the NN model. This process 

is repeated until several iterations, defined by the user considering the budget limitation. 

3.3.3 NN+GA procedure applied to design optimization 

Things are getting more technical since our focus now is to apply the NN+GA procedure 

to design optimization of an aerospace system. In this study, a shape optimization of transonic 

airfoil is introduced as the example of real-world application and illustrated in Figure 3.3. The 

procedure is summarized in the following steps. 

1. Firstly, the geometry parameterization is done. The geometry is characterized by a set 

of design variables that determine the shape of a design. 

2. Latin hypercube sampling (LHS) is done as the initial sampling in the design space. N 

is chosen as the number of initial LHS points, defined by the user. If the geometry 

parameterization has any expensive constraints to be considered, the LHS is combined 

with a constraint handling technique, so that the obtained initial design variables 𝒙𝑖𝑛𝑖𝑡𝑖𝑎𝑙 

are geometrically feasible. Note that the constraint handling technique affects the 

obtained initial samples, make sure that only important constraints are considered. 

3. The objective 𝒇 and constraints 𝒈 are evaluated using true evaluations, in this case, 

CFD is done. Other analytical functions included in the evaluation are also conducted. 

4. The so-far obtained solutions are compiled in a database containing 𝒙 and expensive-

to-evaluate functions from 𝒇 and 𝒈 to approximate. 
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5. The best N solutions are reported as the current generation by using survival selection 

of NSGA-II (considering the non-dominated sorting and the crowding distance sorting). 

6. The NN based surrogate model is constructed by training using design database. An 

approximate model 𝒇̂ and 𝒈̂ that can do analytical evaluation is obtained. 

7. Multi-objective optimization is carried out using NSGA-II algorithm, coded in Python 

[18]. Any call to expensive evaluations of 𝒇 and 𝒈 is replaced with the model 𝒇̂ and 𝒈̂. 

At the end, a set of non-dominated solution 𝒙𝒃𝒆𝒔𝒕 is obtained which corresponds to 𝒇̂𝒃𝒆𝒔𝒕. 

8. K-means algorithm [19] for clustering data is used as the infilling criterion to down-

select K points from 𝒙𝒃𝒆𝒔𝒕 to be evaluated as the infilling points. They are selected from 

the closest points from the centroids. The clustering is done in the objective space. 

9. Steps 3-8 are repeated until the computational budget is exhausted, or the stopping 

criteria are satisfied. The criteria are defined by the users. 

10. A set of solutions 𝒙𝒍𝒂𝒔𝒕_𝒈𝒆𝒏 which correspond to the best N solutions from the design 

database are obtained by survival selection of NSGA-II. They are then sorted based on 

their objective and constraint functions (non-dominated sorting) to find solutions that 

lie on the first non-dominated front to approximate the Pareto-optimal front (POF) (the 

front where the global optimums are located). 

 

 

Figure 3.3 NN+GA procedure applied to airfoil shape optimization. 
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This procedure is used throughout this study when solving the airfoil optimization 

problems. The NN surrogate model can also be replaced with other techniques (e.g., Kriging). 

When comparing NN and Kriging (Chapter 6), the same framework/flow is used, but with 

different models (done in the 5th step) to be optimized by the NSGA-II, as shown below. 

 

 

Figure 3.4 Flow applied to airfoil shape optimization with different models. 
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Chapter 4 Application to test problems 

 

4.1 Introduction 

After setting the optimization procedure, the next task is to apply the method to some 

optimization problems. This chapter covers the application of the proposed method (NN+GA) 

to some popular test problems where the evaluations are cheap and analytical. The main 

objective is to investigate whether integrating ANN-based surrogate model to a GA can cut the 

required number of evaluations. If the result is positive, meaning that the required number of 

evaluations is indeed reduced, the method is ready to be used in a real-world problem. 

 

4.2 Description of the test problems 

Prior to applying the proposed method (NN+GA) to real-world optimization problems, 

the investigation should be first done on the test problems. The test problems are well-known 

optimization problems that only include analytical functions. Their global optimums are known, 

so that it is easier to judge the performance of the algorithm. The test problems are divided into 

two types: single- and multi- objective problems. The main difference is that in single-objective 

problems, only one infilling point is found per iteration, while in multi-objective problems, a 

set of non-dominated solutions is expected in every iteration. Table 4.1 summarizes all the test 

problems used to verify the method. The efficacy of incorporating NN into NSGA-II is the main 

objective here, to see whether it is more efficient than a standard NSGA-II without surrogates. 

The detailed explanation is not covered here since it can be found anywhere else (e.g., [20]). 

 

 

 

 

 

 

Table 4.1  Test problems with various complexities 

Name Type Feature(s) Objective(s) Constraint(s) Variables 

Ackley Single-objective Flat w/ deep hole 1 0 2 

Griewank Single-objective Widespread locals 1 0 2 

Pressure Vessel Single-objective Mixed-integer 1 4 4 

ZDT1 Multi-objective Convex Pareto 2 0 30 

ZDT2 Multi-objective Non-convex Pareto 2 0 30 

ZDT3 Multi-objective Disconnected Pareto 2 0 30 

OSY Multi-objective Many constraints 2 6 6 
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4.3 Methods 

4.3.1 Experimental setup 

Due to the GA stochastic nature, 10 optimization runs with 10 different initial samples 

have been conducted for the test problems. For every optimization, 100 initial samples are used 

to construct the NN model. The infilling point for single-objective test problems is one every 

iteration (the best in terms of objective function predicted by the NN model), while for multi-

objective test problems, 100 optimized solutions found by NSGA-II (with 100 population size) 

on the NN model are directly treated as the new infilling points. The budget for NN+GA in one 

optimization run is 400 and 2000 true evaluations to solve single- and multi-objective test 

problems, respectively. The standard NSGA-II with no surrogates is also used with the budget 

of 5000 and 150000 true evaluations per optimization run to solve single- and multi-objective 

test problems, respectively, except for Griewank that only needs 2500. The NSGA-II settings 

for the standard NSGA-II without surrogates are given in Table 4.2. The NSGA-II in NN+GA 

is the same as given in Table 4.2, but with 250 generations. 

 

 

 

 

 

4.3.2 Performance indicator 

To judge the performance of NN+GA and NSGA-II, the objective function and a 

hypervolume (HV) value is used as the indicator for the single- and multi-objective test 

problems, respectively. In single-objective case, it is straightforward to use the objective value 

since there is only one objective. The obtained solutions with lower value are deemed better in 

the minimization problem. In multi-objective case, given the reference points, HV calculates 

the hatched area, shown in Figure 4.1. In the case where both objectives are minimized, the 

higher the value of HV, the better the obtained solutions are. This is because the direction that 

we want for our solutions to evolve is to the lower left direction. 

 
Test functions 

Real-world problem 
Single-objective Multi-objective 

Pop size 100 100 100 

Crossover 𝜂𝑐 = 15, 𝑟𝑎𝑡𝑒 = 0.9 𝜂𝑐 = 15, 𝑟𝑎𝑡𝑒 = 0.9 𝜂𝑐 = 15, 𝑟𝑎𝑡𝑒 = 0.9 

Mutation 𝜂𝑚 = 15, 𝑟𝑎𝑡𝑒 = 0.01 𝜂𝑚 = 20, 𝑟𝑎𝑡𝑒 = 0.01 𝜂𝑚 = 20, 𝑟𝑎𝑡𝑒 = 0.01 

No. of generations 50, for Griewank: 25 150 10 

 

Table 4.2  The standard NSGA-II settings 
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Figure 4.1 HV calculates the hatched area. 

When all objectives are minimized, we surely want the larger hatched area. In other 

words, the higher the value of HV, the better. The performance of the algorithm can be 

investigated by plotting the indicator value per iteration, and we can see how it evolves over 

the iterations. An algorithm that can achieve better indicator value with lower number of true 

evaluations is preferable, showing its efficiency in solving the problem. 

4.4 Optimization results 

4.4.1 Results for the single-objective test problems 

The average objective values (over 10 runs) of new solutions per iteration is plotted 

against the number of true evaluations. In the case of NN+GA, one new solution is evaluated 

per iteration. As for NSGA-II without surrogates, 100 new solutions must be evaluated. Figure 

4.2 shows the performance comparison for the single-objective test problems. The indicator is 

the minimum objective found every iteration. From Figure 4.2, NN+GA can find optimal 

solutions with fewer true evaluation calls, compared to NSGA-II without surrogates. 

 

 

Figure 4.2 Performance measure histories for single-objective test problems 

(a)  Ackley (b)  Griewank (c)  Pressure vessel 



20 

 

4.4.2 Results for the multi-objective test problems 

The HV values are averaged over 10 optimization runs and plotted against the number 

of true evaluations, shown in Figure 4.3. The HV value basically measures the proximity and 

diversity of the non-dominated solutions. So, the higher the value, the better the solutions are. 

 

 

 

 

Figure 4.3 Performance measure histories for multi-objective test problems 

 Again, NN+GA is superior to NSGA-II without surrogates, in a way that the former can 

find optimal solutions with HV values close to the HV values of the Pareto-optimal (the true 

optimal) solutions but spend much fewer true evaluations in every test multi-objective test 

problem, as observed from Figure 4.3. 

 

 

(a)  ZDT1 (b)  ZDT2 

(c)  ZDT3 (c)  OSY 
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4.5 Summary 

In this chapter, NN+GA is applied to several test problems with various complexities. 

Undoubtedly, the use NN surrogate model in NSGA-II can reduce the number of true 

evaluations in every test problem. This might not seem advantageous in the case of test 

problems, since the optimization time takes longer when using NN+GA due to the time needed 

for training the NN models. However, this can be a great advantage when NN+GA is applied 

to problems with expensive evaluations, especially when the model training time is much 

shorter than the true evaluation time. 

The reason behind the better performance of NN+GA compared to NSGA-II includes the 

fact that we use cheap approximation models when performing the evolutionary search. It thus 

allows us to set a high number of generations (250, in this case) without concerning the 

evaluation time. However, this finding should be further investigated by applying it to real-

world problems with expensive evaluations. 
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Chapter 5 Real-world application 

 

5.1  Introduction 

Aerodynamic design of transonic wing is important since most of commercial aircrafts 

today cruise at transonic speeds, near the speed of sound. The aerodynamic characteristics of 

the wing are strongly affected by the shape of airfoil section. Aerodynamic shape optimization 

of transonic airfoils (ASO-TA) thus becomes a crucial task to find candidates of shapes with 

optimum aerodynamic performance, given the set of design variables, objective, and constraint 

functions. One of the objectives is drag minimization to reduce fuel consumption at cruise. 

However, it comes with a tradeoff with lift, for example. The drag component called induced 

drag increases in proportion to the square of lift. Zero induced drag means zero lift. 

In line with our objective of applying NN+GA to a real-world problem, ASO-TA seems 

to be a good start. Therefore, in this chapter, we apply NN+GA and NSGA-II without surrogates 

to solve ASO-TA problems. The evaluation includes computational fluid dynamics as the true 

evaluation. Unlike in the test problems in the previous chapter in which one evaluation virtually 

takes no time (<0.001 s), the evaluation now takes 1-3 minutes. So, if 1000 designs are to be 

evaluated, 1000-3000 minutes (or 16-50 hours) must be allocated.  

5.2 Description of the problems 

5.2.1 Airfoil parameterization 

Two techniques are used to parameterize the airfoil: PARSEC [21] and B-Spline, 

illustrated in Figure 5.1. All airfoils have a sharp trailing edge, for simplicity. The 9 design 

variables for the PARSEC airfoil are listed in Table 5.1. As for the B-Spline airfoil, we start by 

selecting 18 coordinates of the baseline airfoil (RAE2822). The selection is done by roughly 

distributing them evenly on the airfoil surface (purely up to the designers). Note that larger 

number of control points give more flexibility, but bumpy airfoils that can lead to bad-

performing designs. The 18 coordinates are treated as the control points of the B-Spline of order 

3. We then introduce some perturbations to the 18 control points in the y-axis (with fixed x-

axis) to create new airfoils. The upper and lower limit of y-axis are listed in Table 5.2. The B-

Spline curves are generated using NURBS-Python [22]. 
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(a) PARSEC parameterization 

 

(b) B-Spline parameterization 

 

Figure 5.1 Two techniques for parameterizing the airfoils: PARSEC and B-Spline. 
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Table 5.1 PARSEC variables and their boundaries. 

No Variables Lower Bound Upper Bound 

1 rLE   

2 Xup   

3 Yup   

4 YXXup − − 

5 Xlo   

6 Ylo − − 

7 YXXlo   

8  − − 

9 


   

 

Table 5.2 B-Spline control points and their boundaries. 

No X Vars Lower Bound Upper Bound 

1. 0.928864 𝑌1 -0.009306 0.010694 

2. 0.853553 𝑌2 -0.024314 0.015686 

3. 0.777785 𝑌3 -0.032689 0.007310 

4. 0.668445 𝑌4 -0.048139 -0.007814 

5. 0.549009 𝑌5 -0.064642 -0.024642 

6. 0.426635 𝑌6 -0.076979 -0.036979 

7. 0.308658 𝑌7 -0.078459 -0.038459 

8. 0.202150 𝑌8 -0.071694 -0.031694 

9. 0.071136 𝑌9 -0.053169 -0.013169 

10. 0.071136 𝑌10 0.012644 0.052644 

11. 0.202150 𝑌11 0.031885 0.071885 

12. 0.308658 𝑌12 0.039629 0.079629 

13. 0.426635 𝑌13 0.042779 0.082779 

14. 0.549009 𝑌14 0.040194 0.080194 

15. 0.668445 𝑌15 0.030993 0.070993 

16. 0.777785 𝑌16 0.017847 0.057847 

17. 0.853553 𝑌17 0.065540 0.046554 

18. 0.928864 𝑌18 0.037689 0.023769 

 

5.2.2 Computational fluid dynamics 

CFD is used to evaluate the true aerodynamic performance (i.e., drag coefficient Cd and 

lift coefficient Cl). The condition includes a 2D inviscid flow, solved by SU2 open-source code 

[23]. The inviscid Euler solver is not realistic to simulate real-world aerodynamics with 

viscosity and thermal conductivity. Nevertheless, it is cheap enough for the current machine 

being used: Intel(R) Xeon(R) CPU E5-1630 v4 3.70 GHz with 4 cores. It thus allows us to 
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perform numerous CFD evaluations in the present numerical experiments, since our interests 

are more on the comparison between optimization algorithms, rather than the results of the 

optimization. Moreover, using the Euler solver is complex enough for the surrogate models and 

is still a representative of a real-world optimization problem. 

The inviscid and compressible Euler equations can be obtained as a simplification of the 

compressible Navier-Stokes equations in the absence of viscosity and thermal conductivity, 

expressed in differential form as: 

 
𝜕𝑈

𝜕𝑡
+ ∇. 𝐹̅𝑐(𝑈) − 𝑆 = 0, (5-1) 

 

where the conservative variables 𝑈 are given by: 

 𝑈 = {𝜌, 𝜌𝑣̅, 𝜌𝐸}T. (5-2) 

 

𝑆 is a generic source term, while the convective flux 𝐹̅𝑐 is given by: 

 𝐹̅𝑐 = {

𝜌𝑣̅

𝜌𝑣̅ ⊗ 𝑣̅ + 𝐼 ̅𝑝̅
𝜌𝐸𝑣̅ + 𝑝𝑣̅

}, (5-3) 

 

where 𝜌  is the fluid density, 𝑣̅ = {𝑢, 𝑣, 𝑤}𝑇 ∈ ℝ3  is the flow speed in Cartesian system of 

reference, 𝐸 is the total energy per unit mass, 𝑝 is the static pressure, and 𝑇 is the temperature. 

Assuming a perfect gas with a ratio of specific heats γ and gas constant 𝑅, one can close the 

system by determining pressure 𝑝 from: 

 𝑝 = (γ − 1)𝜌[𝐸 − 0.5(𝑣̅ ∙ 𝑣̅)], (5-4) 

 

and the temperature 𝑇 from the ideal gas equation: 

 𝑇 =
𝑝

𝜌𝑅
. (5-5) 

 

The CFD solver uses Jameson-Schmidt-Turkel (JST) [24] for the convective flux scheme and 

Euler implicit scheme for the time discretization method. 
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5.2.3 Grid configuration 

The CFD results are dependent on the grid resolution. Thus, we should conduct a grid 

convergence study (GCS) to decide our grid configuration so that our aerodynamic values of 

interest are grid independent. In this, the grid independence is marked by the convergence of 

Cd and Cl. The GCS is done on the RAE2822 in a 2D inviscid flow condition with angle of 

attack 𝛼 = 2o and Mach number 𝑀 = 0.73. We use a standard C-grid topology and survey five 

types of grid resolution, with various grid densities as illustrated in the Figure 5.3. The GCS 

results are shown in Table 5.3 and Figure 5.2. 

Table 5.3 The results of grid convergence study 

Types Mesh size 𝑪𝒅 𝑪𝒍 

Extra coarse 3,344 0.0093040 0.8373201 

Coarse 7,714 0.0080846 0.8470053 

Medium 17,688 0.0076633 0.8488699 

Fine 38,016 0.0075925 0.8504628 

Extra fine 89,496 0.0075496 0.8505103 

 

 

 

Figure 5.2 Grid convergence for drag and lift coefficients 

 We can observe that Cd and Cl have converged between fine and extra fine grids. The 

CFD on the fine grid took about 1 minute and 10 seconds while it took about 2 minutes and 47 

seconds for the extra fine grid. Based on this result, we decide to use the fine grid, as in Figure 

5.4. The airfoil is resolved by 338 computational points. The C-grid has the far-field boundary 

located 50 chord lengths away from the airfoil surface (65 steps for the half-circle and 130 steps 

for the downstream far-field), the first layer grid thickness as 0.001 chord length. Hence, the 

grid has 337 x 65 + 2 (130 x 65) = 38,805 computational cells. All the grids are generated by 

Pointwise [25], a commercial meshing software. 

            
       

      
        

      
        

    
        

         
        

  

  

  

  

  

  

  

  

  

  

  

                                

 
 
  
 
  
  

                    

        

            
          

      
          

      
          

    
          

         
          

    

    

  

    

    

    

    

  

    

                                

 
   
   
  

                    

       

(a)  Drag convergence (b)  Lift convergence 
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Figure 5.3 The C-grid with various densities from lower (top) to higher (bottom) density  
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(a) Near-field boundary 

 

(b) Far-field boundary 

Figure 5.4 Example of the C-grid configuration on RAE2822 
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5.2.4 Problem definitions 

The complexity of an optimization problem is influenced by the dimensionality, the 

governing physics, the presence of constraints, etc. The higher the dimensionality, the more 

complex the problem is. The presence of constraints also adds more complexity to the problem. 

Therefore, we define the following three multi-objective ASO-TA problems, aiming at 

presenting different complexities. Note that we transform the maximization of 𝐶𝑙  to the 

minimization of −𝐶𝑙. 

ASO-TA1: (2 objectives, 0 constraint, 9 variables) 

minimize           ∶  𝐶𝑑  and − 𝐶𝑙 

with respect to ∶  PARSEC variables in Table 5.1 

subject to          ∶ - 
@ 𝛼 = 2𝑜, 𝑀 = 0.73 

 

ASO-TA2: (2 objectives, 0 constraint, 9 variables) 

minimize           ∶  𝐶𝑑  and − 𝐶𝑙 

with respect to ∶  PARSEC variables in Table 5.1 

subject to          ∶ - 
@ 𝛼 = 2𝑜, 𝑀 = 0.80 

 

ASO-TA3: (2 objectives, 3 constraints, 18 variables) 

minimize           ∶  𝐶𝑑  and − 𝐶𝑙 

with respect to ∶  B − Spline control points in Table 5.2 

subject to          ∶ 0.8 ∗ 𝐴𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − 𝐴 ≤ 0 

               𝑌1 − 𝑌18 ≤ 0 

                      𝑌2 − 𝑌17 ≤ 0 

@ 𝛼 = 2𝑜, 𝑀 = 0.73 

 

The above problems are in an order of increasing complexity, with two expensive 

objective functions: 𝐶𝑑 and 𝐶𝑙. ASO-TA1 and ASO-TA2 have no constraint functions, but the 

latter has a slightly larger Mach number. This is done to present a more complex problem since 

the shock wave is expected to be more intense. ASO-TA3 has higher dimensionality with 

addition of three cheap constraints. The area constraint (0.8 ∗ 𝐴𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − 𝐴 ≤ 0) prevents the 

airfoil from going too slender compared to baseline, and the trailing edge constraints (𝑌1 −

𝑌18 ≤ 0, 𝑌2 − 𝑌17 ≤ 0) ensure geometrically feasible shapes. Look at the green dashed line in 

Figure 5.1(b). The area and trailing edge constraints prevent such airfoil from being created. 
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5.3 Methods 

5.3.1 Experimental setup 

We use NN+GA and three different configurations of NSGA-II algorithm without 

surrogates to approach the ASO-TA problems. The same exact initial samples found by LHS 

are used as the initial population for all algorithms so that we can do a fair comparison. The 

number of initial samples is 100. In the NN+GA, an initial surrogate model is obtained by 

training the model based on these 100 initial samples. The training parameters are listed in 

Table 5.4. 

NSGA-II with the configuration listed in Table 5.5 is used with the NN model replacing 

all the expensive function evaluations (𝐶𝑑 and 𝐶𝑙) to obtain 100 optimized solutions on the MLP 

model. K-means algorithm is used to cluster these samples into 𝑁𝑖𝑛𝑓𝑖𝑙𝑙𝑖𝑛𝑔 clusters. The samples 

closest to the centroids are chosen as the next sample points (infilling points). For ASO-TA1 

and ASO-TA2, 20 infilling points are added 5 times, while for ASO-TA3, 10 infilling points 

are added 30 times. Thus, if the optimization is done until 𝑛𝑡ℎ generation, the number of CFD 

evaluations using MLP+GA can be written as follows: 

 𝑁𝐶𝐹𝐷 = 100 + 𝑁𝑖𝑛𝑓𝑖𝑙𝑙𝑖𝑛𝑔(𝑛𝑔𝑒𝑛 − 1). (5-6) 

 

Table 5.4 The NN training parameters. 

 ASO-TA1 ASO-TA2 ASO-TA3 

𝑵𝒏𝒆𝒖𝒓𝒐𝒏 

(input) 
9 9 18 

𝑵𝒏𝒆𝒖𝒓𝒐𝒏 

(hidden) 
128 128 2048 

𝑵𝒏𝒆𝒖𝒓𝒐𝒏 

(output ) 
2 2 2 

Learning rate 0.001 

𝑵𝒆𝒑𝒐𝒄𝒉 2000 

Train ratio 80% of the current database 

Batch size 5% of the training set 
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Table 5.5 Parameter values for NSGA-II inside NN+GA. 

Population size 100 

Max number of 

generations 
250 

Crossover 𝜂𝑐 = 15, 𝑟𝑎𝑡𝑒 = 0.9 

Mutation 𝜂𝑚 = 20, 𝑟𝑎𝑡𝑒 = 1/100 

 

In the second algorithm, NSGA-II with no surrogates is used with a population size of 

100, producing the next 100 sample points to be evaluated. Due to budget limitation, the NSGA-

II100pop is run until 10th generation (1000 CFD evaluations). In the third and fourth algorithm, 

NSGA-II with fewer population size is used. Now, only a population size of 20 participates in 

the genetic process, producing the next 20 samples to be evaluated. Since we must start with 

the same 100 initial samples, the K-means algorithm is used to down-select 20 out of 100 initial 

LHS samples. The K-means algorithm is run on the design space 𝒙 for the third algorithm, and 

on the objective space 𝒇 for the fourth algorithm. The fourth algorithm is the least efficient, 

because the 100 LHS samples must be evaluated first. Since 20 samples are chosen, the 

remaining 80 samples are redundant. For ASO-TA3 only, the population size is set to 10. Thus, 

if the optimization is done until 𝑛𝑡ℎ generation, the number of CFD evaluations using NSGA-

II without surrogates can be written as follows: 

 𝑁𝐶𝐹𝐷 = 100 + 𝑁𝑝𝑜𝑝(𝑛𝑔𝑒𝑛 − 1). (5-7) 

 

The third and fourth algorithm are done to lower the budget to make a fair comparison 

with our proposed method (NN+GA). Since the 𝑁𝑝𝑜𝑝 for the second algorithm is higher than 

𝑁𝑖𝑛𝑓𝑖𝑙𝑙𝑖𝑛𝑔 of the NN+GA method, it might be influenced by this setting. The parameters for the 

second, third, and fourth algorithm are listed in Table 5.6. Note that P1, P2, and P3 are problem 

1, problem 2, and problem 3, respectively. 
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Table 5.6 Parameter values for the three NSGA-II configurations. 

 2nd algo 3rd algo 4th algo 

Pop size 

(P1, P2) 
100 20 20 

Pop size 

(P3) 
100 10 10 

𝒏𝒈𝒆𝒏_𝒎𝒂𝒙 

(P1, P2) 
10 11 11 

𝒏𝒈𝒆𝒏_𝒎𝒂𝒙 

(P3) 
10 31 31 

Crossover 
𝜂𝑐 = 15 

𝑟𝑎𝑡𝑒 = 0.9 

𝜂𝑐 = 15 

𝑟𝑎𝑡𝑒 = 0.9 

𝜂𝑐 = 15 

𝑟𝑎𝑡𝑒 = 0.9 

Mutation 
𝜂𝑐 = 20 

𝑟 = 1/100 

𝜂𝑐 = 20 

𝑟1,2 = 1/20 

𝑟3 = 1/10 

𝜂𝑐 = 20 

𝑟1,2 = 1/20 

𝑟3 = 1/10 

Initial pop LHS samples K-Means on 𝒙 K-Means on 𝒇 

 

5.3.2 Performance indicators 

The HV indicator is used as the performance metric for each optimization. HV measures 

the proximity and diversity of the obtained non-dominated solutions (optimized solutions). For 

NN+GA, the HV of current population is calculated every time the infilling points are evaluated, 

while for NSGA-II, it is calculated every time the new generation is evaluated. To calculate 

HV, two reference points, [0.0, −1.5]  and [0.1, 0.0] , in the objective space are used to 

normalize both 𝐶𝑑 and 𝐶𝑙. Due to the stochastic nature of the algorithms, each optimization 

problem is solved three times with different initial populations (LHS is done three times). Thus, 

the HV value is averaged among three optimization runs. 

 

5.4 Results and discussions 

5.4.1 Results for ASO-TA1 

Figure 5.5 shows the average HV history for all algorithms performance in ASO-TA1. It 

basically shows how HV value progresses as the number of true evaluations increases. Since 

HV values represent the proximity towards the POF and its spread, the higher the HV value is, 

the better. It can be observed from Figure 5.5, the proposed method (NN+GA) can achieve 

higher HV value with significantly fewer number of CFD evaluations compared to the standard 

NSGA-II without surrogate model. We defined our budget for ASO-TA1 to be: 3 x 200 = 600 
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evaluations for NN+GA; 3 x 1000 = 3000 evaluations for the second algorithm; and 3 x 300 = 

900 evaluations for the third and fourth algorithm. With only 600 CFD evaluations, the NN+GA 

achieves an HV value of around 0.675 while NSGA-II (2nd algo) can only achieve 0.650 with 

3000 CFD evaluations. We can say that the proposed method is superior to the rest of algorithms 

in solving ASO-TA1. If one CFD takes around 1 minute and 10 seconds, it means NN+GA cuts 

the computational time for around 48 hours. 

 

Figure 5.5 Average HV values for ASO-TA1. 

 

The NSGA-II 3rd and 4th algorithms, again, are used to eliminate the doubt that claims 

the superiority of NN+GA, is because of lower 𝑁𝑖𝑛𝑓𝑖𝑙𝑙𝑖𝑛𝑔 = 20 compared to 𝑁𝑝𝑜𝑝 = 100. Even 

with 𝑁𝑝𝑜𝑝 = 20, there is no significant improvement in the 3rd and 4th algorithm, that can make 

them compete with NN+GA. 

These results are visualized in Figure 5.6 that shows the plot of all solutions found by 

NN+GA and NSGA-II (2nd algo) and the attainment surface of their non-dominated sets. The 

plot of the initial population and the non-dominated set indicates the complexity of the problem. 

From Figure 5.6, we can observe that most of the initial population lie in the low 𝐶𝑑 region 

(𝐶𝑙 = 0.4 − 0.6). The only task of the optimizer is then to expand the search to cover the high 

𝐶𝑙 region. The CFD results of the optimized solutions are presented in Figure 5.11-5.13. Note 

that the low-drag airfoils have less intense shock, shown in the pressure contours, which in turn 

reduces the wave drag. 
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(a) All solutions 

 

(b) Attainment surfaces 

 

Figure 5.6 Plots in the true objective space for ASO-TA1. 
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5.4.2 Results for ASO-TA2 

Both ASO-TA1 and ASO-TA2 have all identical conditions, except for the slightly 

higher Mach number in the latter. This slight difference results in a higher complexity. This is 

indicated in the plot of the initial population and the non-dominated set (Figure 5.8(a)). The 

optimizer’s task now is to find both extreme regions. A slightly higher Mach number induces a 

more intense shock wave, as found from a comparison between Figure 5.11 and 5.12. The shock 

wave induces higher wave drag that in turn increases the drag coefficient 𝐶𝑑. This is the reason 

why the initial population in ASO-TA2 does not lie in the low 𝐶𝑑 region as in ASO-TA1. 

Figure 5.7, again, shows the average HV history for all algorithms’ performance in 

solving ASO-TA2. In the same way, it shows the superiority of NN+GA over the standard 

NSGA-II in solving ASO-TA2. With only 3 x 200 = 600 CFD evaluations, the NN+GA 

achieves an HV value of around 0.535, while the NSGA-II (2nd algo) can only achieve 0.505 

with 3 x 1000 = 3000 CFD evaluations. If one CFD takes around 1 minute and 10 seconds, it 

means NN+GA cuts the computational time for around 48 hours. The training time is only 

around 20 seconds. The third and fourth algorithms give a slight improvement for NSGA-II, 

with the same 3 x 300 = 900 evaluations, but are still inferior to NN+GA.  

 

 

Figure 5.7 Average HV values for ASO-TA2. 
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Question arises as to why smaller population size of NSGA-II gives an improvement in 

ASO-TA2, but not in ASO-TA1. There is no obvious reason for this, but the fact that any GA 

algorithm is stochastic might be one of the factors. Moreover, we did not give more budget to 

the 3rd and 4th algorithm, so future generations are unknown. 

 

(a) All solutions 

 

(b) Attainment surfaces 

Figure 5.8 Plots in the true objective space for ASO-TA2. 
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5.4.3 Results for ASO-TA3 

The B-Spline parameterization has 18 control points as the design variables. Unlike the 

9 design variables in PARSEC that ensures the smoothness of the airfoil, the B-Spline control 

points offer much more flexibility that allows the creation of rough surfaces. Thus, ASO-TA3 

is the most complex problem among the three problems. It can be observed in Figure 5.10(a) 

that the initial population is located far away from the POF. Some of the solutions found by 

NSGA-II are even infeasible, violating the area constraints. Due to this difficulty, we define the 

budget to be: 3 x 400 = 1200 CFD evaluations for NN+GA, the third and fourth algorithm, and 

3 x 1000 = 3000 CFD evaluations for NSGA-II (2nd algo). From Figure 5.10(b), it is observed 

that both NN+GA and NSGA-II (2nd algo) can find solutions that dominate the baseline (in 

terms of both objectives), located in the third quadrant position relative to the baseline. 

Figure 5.9 shows the average HV history in solving ASO-TA3 which corroborates the 

superiority of NN+GA over NSGA-II even in the more complex problem. However more CFD 

evaluations are needed compared to the previous two problems. If one CFD takes around 3 

minutes, it means NN+GA cuts the computational time for around 90 hours. The CFD result of 

the baseline airfoil and its geometry comparison between the best two extreme solutions with 

the baseline in ASO-TA3 are also plotted in Figure 5.14. It can be observed that the camber of 

the highest 𝐶𝑙 airfoil aft portion is increased to gain more lift. In contrast, the camber of the 

lowest 𝐶𝑑 airfoil aft portion is decreased to reduce the wave drag. 

 

Figure 5.9 Average HV values for ASO-TA3. 
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(a) All solutions 

 

(b) Attainment surfaces 

Figure 5.10 Plots in the true objective space for ASO-TA3. 
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5.4.4 CFD results 

 

 

Figure 5.11 Pressure contours of extreme solutions for ASO-TA1. 

 

 

 

Figure 5.12 Pressure contours of extreme solutions for ASO-TA2. 

 

NN+GA (1st algo) 

NSGA-II (2nd algo) 

Highest lift 

Highest lift Highest L/D Lowest drag 

Lowest drag Highest L/D 

NN+GA (1st algo) 

NSGA-II (2nd algo) 

Highest lift Highest L/D Lowest drag 

Highest lift 

Highest L/D 

Lowest drag 
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Figure 5.13 Pressure contours of extreme solutions for ASO-TA3. 

 

 

Figure 5.14 Pressure contour of the baseline and its geometry comparison with the best two 

extreme solutions found by NN+GA and NSGA-II 

The pressure coefficient contours are plotted above for every extreme solution: highest 

lift, lowest drag, and highest L/D. They are also shown in the true objective space as in the 

Figures 5.15-5.17. The results show unnatural shock waves which are too intense. It is because 

of the use of Euler solver, which in its nature, is not realistic and this nature seems to be 

exploited by the optimizers that have no information about the physics (physics-uninformed 

models). 

NN+GA (1st algo) 

NSGA-II (2nd algo) 

Highest lift 

Highest L/D 

Highest lift Highest L/D Lowest drag 

Lowest drag 

RAE2822 
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Figure 5.15 Extreme solutions shown in the true objective space for ASO-TA1 
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Figure 5.16 Extreme solutions shown in the true objective space for ASO-TA2 
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Figure 5.17 Extreme solutions shown in the true objective space for ASO-TA3 
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5.5  Summary 

In this chapter, we have applied NN+GA and compared it with NSGA-II without surrogates 

and with different configurations. From all the results, NN+GA is shown to be more efficient 

than NSGA-II without surrogates in solving real-world problems, especially the transonic 

airfoil optimization. NN+GA cuts the computational time for around 48 hours in ASO-TA1 and 

ASO-TA2, while it reduces the CFD computational time for around 90 hours. Moreover, the 

obtained optimal solutions are better than the ones found by NSGA-II without surrogates. 

Again, same as in the summary of Chapter 4, the reasons behind the superiority of NN+GA 

is since NN+GA uses surrogate models by NN that can do analytical evaluations that in turn 

becomes useful when doing population-based optimization routines. The number of generations 

can be set high since the aerodynamic performance is now approximated by the NN model, not 

evaluated by the CFD, as in the NSGA-II without surrogates. 

Although the NN model is only an approximate model, it turns out to be sufficient to be 

used as the response surface that can assist the optimization routines. Now, it is undoubtedly 

true that NN sufficiently has the approximation power to map non-linear relationship between 

input and output. The next task is to compare the NN-based surrogate models with other 

surrogate models, e.g., Kriging. This task is subject to the next chapter. 
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Chapter 6 Comparing NN and Kriging surrogates for 

aerodynamic design  

 

6.1 Introduction 

The use of surrogate (or meta) modeling techniques in engineering design and exploration 

has been around for decades. The driving idea is to substitute the analysis tools that are often 

expensive with cheap and data-driven models. In aerospace systems, for example, the analysis 

involves aerodynamics, structures, propulsion, etc. Since exhaustive real experiments are 

impractical to analyze such systems, it has been a norm to use computer simulations to predict 

the design performance (e.g., computational fluid dynamics: CFD). However, to conduct an 

accurate design optimization, high-fidelity computer simulations that might take hours or days 

for a single design evaluation often must be employed. This makes population-based methods 

such as evolutionary algorithms (EAs) not suitable to be used in engineering design. Thus, 

combining surrogate models and EAs becomes a natural and common-sense method to 

effectively approach design optimization. This method is referred to as surrogate-based 

optimization (SBO) [26]. 

In real-world design optimization problems where the computational budget is limited, it 

is important to carefully decide which design points to sample next. EAs are usually used to 

perform the search, mainly due to their ability to locate optimal solutions close to the global 

optimum. The search is done by optimizing the acquisition functions, provided by data-driven 

surrogate models that can map input(s) to output(s) analytically. Therefore, the choice of 

surrogate models indirectly affects search performance. 

Of several surrogate models, Kriging [4] is arguably the most popular surrogate model in 

the Bayesian optimization approach [27]. Kriging provides a function approximation along with 

its uncertainties. One Kriging model, however, can only do mapping for one function. This is a 

pitfall in multi-objective optimization problems (MOPs) since K Kriging models must be 

constructed for K expensive objective (and constraints, if any) functions. Neural network (NN), 

on the other hand, can do mapping between many design variables (inputs) to multiple functions 

(outputs) in a single model. NN thus has a great potential to be a surrogate model for optimization 

problems that have multiple expensive functions (e.g., MOPs) and many design variables. 
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Both Kriging and NN can provide a fitness approximation used in the EA optimization to 

drive the search. However, unlike NN, Kriging can also provide another type of acquisition 

function (e.g., expected improvement: EI) as a new search space, utilizing the readily available 

uncertainties information. The EI acquisition function promises a balance between exploitation 

and exploration when searching for new designs [28]. This chapter compares NN and Kriging 

with their respective acquisition functions combined with NSGA-II applied to multi-objective 

aerodynamic design optimization of transonic airfoil (ADO-TA) problems. Two aspects to be 

considered are the search performance and the model generation time. NSGA-II without 

surrogates is also performed in some of the problems to demonstrate that SBO techniques are 

efficient to approach design optimization. 

 

6.2 Surrogate model: ordinary Kriging 

The idea of any data-driven surrogate model is to construct an analytical model based on 

a sampled dataset, allowing fast prediction at unsampled locations. The model analytically maps 

the relationship between the input x = x1 x2  xn
T
, where n is the dimensionality of the 

decision variables, and the output of interest y = f(x) (black-box function). 

There are many variants of Kriging. In this chapter, an ordinary Kriging (OK) is used that 

expresses the black-box function y(x) as: 

 𝑦(𝒙) = 𝜇 + 𝑍(𝒙), (6-1) 

 

where 𝜇  is the mean of Kriging approximation and 𝑍(𝒙) represents its deviation. Sampled 

points are interpolated with the Gaussian process to estimate the distribution of the function 

value at unsampled locations. The correlation 𝐶𝑜𝑟𝑟(𝑍(𝒙(𝑖)), 𝑍(𝒙(𝑗))) ≡ 𝑹𝑖𝑗 between 𝑍(𝒙(𝑖)) 

and 𝑍(𝒙(𝑗)) is modeled by the Gaussian autocorrelation function: 

 𝑹𝑖𝑗 = exp (− ∑ 𝜃𝑘|𝑥𝑘
(𝑖)

− 𝑥𝑘
(𝑗)

|
2

𝑛

𝑘=1

), (6-2) 

 

where 𝜽 = {𝜃1, 𝜃2, … , 𝜃𝑛}𝑇 is the hyperparameter vector that needs to be optimized. 
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For a new unsampled point, OK predicts the output y(x) and its uncertainty as follows: 

 𝑦̂(𝒙) = 𝜇 + 𝒓(𝒙)T𝑹−1(𝒚 − 𝟏𝜇), (6-3) 

   

 

 
𝑠̂2(𝒙) = [1 − 𝒓(𝒙)T𝑹−1𝒓(𝒙) +

1 − (𝟏T𝑹−1𝒓(𝒙))

(𝟏T𝑹−1𝟏)
], (6-4) 

 

where 𝑹 denotes the n x n matrix whose (i, j) entry is 𝑹𝑖𝑗, 𝒓(𝒙) is the correlation between any 

𝒙 and sampled points 𝒙𝑠𝑎𝑚𝑝𝑙𝑒𝑑 whose (i, 1) entry is 𝐶𝑜𝑟𝑟(𝑍(𝒙), 𝑍(𝒙(𝑖))), 𝒚 is the observation 

at sampled locations, and 1 is the vector of ones. 

6.3 Problem definitions 

In this chapter, we present three multi-objective aerodynamic design optimization of 

transonic airfoils (ADO-TA, not to confuse with ASO-TA in the previous chapter). The airfoil 

parameterization, the grid configuration and the CFD solver are identical as before. 

ADO-TA1: (2 objectives, 0 constraint, 9 variables) 

minimize           ∶  𝐶𝑑  and − 𝐶𝑙 

with respect to ∶  PARSEC variables in Table 5.1 

subject to          ∶ - 
@ single point, 𝛼 = 2𝑜, 𝑀 = 0.73 

 
ADO-TA2: (2 objectives, 3 constraints, 18 variables) 
minimize              : Cd and − Cl 
with respect to    : B-Spline control points in Table 5.2 
subject to            : 0.8 ∙ Abaseline − A ≤ 0 
                                 Y1 −  Y18 ≤ 0 
                                 Y2 −  Y17 ≤ 0 
@ single point,  = 2


 M = 0.73 

 
ADO-TA3: (2 objectives, 6 constraints, 18 variables) 
minimize             : 0.25 Cd M1

 + 0.50 Cd M2
 + 0.25 Cd M3

 

minimize             : −0.25 Cl M1
 − 0.50 Cl M2

 − 0.25 Cl M3
 

with respect to    : B-Spline control points in Table 5.2 
subject to            : 0.75 −  Cl M1

≤ 0 

                                  0.75 −  Cl M2
≤ 0 

                                  0.75 −  Cl M3
≤ 0 

                              0.8 ∙ Abaseline − A ≤ 0 
                                 Y1 −  Y18 ≤ 0 
                                 Y2 −  Y17 ≤ 0 
@ multi points,  = 2

o
, M1 = 0.73, M2 = 0.77, M3 = 0.80 
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 While ADO-TA1 and ADO-TA2 include a single-point optimization, ADO-TA3 

includes a multi-point optimization where the objective functions now become the weighted 

sums of Cd and −Cl at the three flight conditions. The weights entirely depend on the flight 

requirements. We put more weight on the flight M = 0.77. In the problems where B-Spline 

parameterization is used, 3 additional cheap constraints are introduced. The area constraint (0.8 ∙ 

Abaseline − A ≤ 0) prevents the airfoil from going too slender compared to the baseline, and the 

trailing edge (TE) constraints (Y1 −  Y18 ≤ 0 , Y2 −  Y17 ≤ 0 ) ensure geometrically feasible 

shapes. A is the 2D area of the airfoils calculated by approximating it with many triangles. Y1 

and Y2 are y-coordinates of the two points in the lower part of the airfoil near the TE, while Y17 

and Y18 are y-coordinates of the two points in the upper part near the TE. Look at the green 

dashed line in Fig 5.1(b). The area and trailing edge constraints prevent such airfoils from being 

created. In ADO-TA3, three new black-box constraints (Cl constraints) are introduced. 

 

6.4 Methods 

6.4.1 Acquisition functions 

The general task in any design optimization problem is to find design candidates with 

optimum design performance, given the set of design variables x, objective functions f, and 

constraints g. Since the true fitness evaluation of f and g is often expensive, the problem is 

reformulated: optimizing approximate objective functions f̂, subject to approximate constraints 

ĝ. In the case where analytical constraints exist, they are evaluated using the true analytical 

functions. In this chapter, the value of f̂ and ĝ are calculated by the NN and OK models. The 

optimizer task is then to perform the search in the approximate objective space. We call these 

methods as NN+GA and EST-OK+GA, for combining the neural network and the ordinary 

Kriging, respectively, with a genetic algorithm (NSGA-II). The term EST comes from the fact 

that only the estimated value is used, obtained from the OK model. 

Since the estimated value provided by the OK model includes uncertainty in it, there is a 

possibility of missing the global optimum. Another technique is to utilize the uncertainty 

information provided by the OK model and then construct a new acquisition function to be 

optimized: expected improvement (EI). 
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The probability of being the global optimum is given by the following expressions [29]: 

 𝐼(𝑥) = max(𝑓min − 𝑦, 0), (6-5) 

   

 EI = 𝐸(𝐼) = ∫ (𝑓min − 𝑦)𝜙(𝑦)𝑑𝑦,
𝑓min

−∞

 (6-6) 

where 𝜙 is the probability density function representing uncertainty about 𝑦. The problem being 

solved now by the optimizer is to find the next sample points to maximize EI. 

In the Bayesian approach, it is common to convert a multi-objective optimization 

problem (MOP) into a single-objective optimization problem (SOP) with EI as the acquisition 

function. However, only one new sample point per iteration will be found in such a framework. 

Since we include multi-objective problems in this paper and to ensure fairness between the 

methods, EI is constructed for every objective. Therefore, the MOPs do not need to be converted 

into SOPs. In this way, Pareto-optimal solutions of EIs can be found, and several new points 

can be sampled per iteration. This technique is used in [30]. 

If there are constraints 𝒈: 

 𝑔𝑖 ≤ 0,     𝑖 = 1, … , 𝑘, (6-7) 

the EI subject to constraints are modified as follows: 

 EI = 𝐸(𝐼) = 𝐸𝑦(𝐼) ∙ ∏ 𝜙𝑔𝑖
(0)

𝑖=1,…,𝑘
. (6-1) 

To calculate Equation (6-1), the OK is constructed for all black-box objective functions and 

constraints. The term Ey(I) is calculated in the OK for objective functions, while the term 

∏ 𝜙
𝑔𝑖

(0)𝑖=1,…,𝑘  is calculated in the OK for constraints. The last term represents the probability of 

satisfying the constraints. Noted only black-box constraints need to be included. This technique 

is used in [28]. We call this method EI-OK+GA. 
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6.4.2 Optimization flow and budget allocation 

The optimization flow is the same as explained in the Chapter 4 – 3.2.3. Three SBO 

methods (NN+GA, EST-OK+GA, and EI-OK+GA) and a stand-alone NSGA-II without 

surrogates (hereafter called NSGA-II-WS) are done to solve ADO-TA1 and ADO-TA2. The 

setting for NSGA-II-WS and the NSGA-II optimizer inside the SBO is summarized below. 

Table 6.1 Parameter values for NSGA-II 

Population size 100 

Max number of generations 250 

Crossover 
c
 = 15, rate = 0.9 

Mutation 
m

 = 20, rate = 0.01 

 

 Due to the budget limitation, only the SBO methods are done to solve ADO-TA3. For 

every method, we start with 100 evaluated initial design points. In ADO-TA1, 20 infilling points 

are then added per iteration for the SBO methods and 100 new points for NSGA-II-WS (since it 

produces the same size of the child population). In ADO-TA2 and ADO-TA3, 10 infilling points 

are added per iteration for the SBO methods. Since each problem is solved three times 

independently, so the total budget is 3 x 200 = 600 true evaluations for the SBO methods and 

3 x 1000 = 3000 true evaluations for NSGA-II-WS. Only for NN+GA, the budget for solving 

ADO-TA2 is 3 x 400 = 1200 true evaluations. 

6.4.3 Experimental settings 

For EI-OK+GA and EST-OK+GA, the OK model is built for every black-box function 

evaluated by CFD. In ADO-TA1 and ADO-TA2, two OK models are built, while in ADO-TA3, 

three OK models are required. As for NN+GA, only one model is needed for every problem. 

The hyperparameters in OK are optimized using L-BFGS-B [31], while the connection weights 

in NN are optimized using Adam [11]. The number of OK hyperparameters is the same as the 

dimensionality of the problem, as stated in (2). The OK models are trained three times, the best 

one is picked based on the smallest leave-one-out-cross-validation (LOOCV) error. For training 

NN, gradient descent [10] with the mini-batch technique is used. The cross-validation technique 

is also used to stop the NN training when the validation error increases (overfitting sign). Unlike 

training OK, training NN requires more parameters to be defined. The training parameters for 

NN are listed in Table IV. No optimization is done to decide the values of these parameters, they 

are manually fine-tuned. 
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6.5 Comparison metrics  

6.5.1 Search performance 

The design optimization problems are treated as MOPs. In MOPs where the objectives are in 

a trade-off relationship, multiple optimal (or non-dominated) solutions will be found instead of 

a single solution. In SOPs, the search performance can be directly quantified by the objective 

function value. In MOPs, however, new metrics must be used. One of the ways to measure the 

search performance is, again, to use hypervolume (HV) metrics. HV can quantitatively measure 

the convergence and the spread of the non-dominated solutions. Given a reference point, the HV 

is obtained by calculating the area between the reference point and the current non-dominated 

solutions, in the true objective space. In the cases where all objectives are minimized, the higher 

the HV value, the better. 

Prior to calculating HV, both objectives are normalized using two reference points: [0.1, 0.0] 

and [0.0, -1.5]. Hence, the reference point for calculating HV is [1.0, 1.0]. In this paper, the HV 

value is calculated every time new design points are sampled. Due to the stochastic nature of the 

optimizer, each problem is solved three times independently with different initial samples. The 

HV value is thus averaged and plotted against the number of true evaluations. 

6.5.2 Model generation time 

Using surrogates can cut the time for expensive evaluations. However, there should be 

additional time allocated for constructing the surrogates. In the iterative design process, the new 

surrogate models are reconstructed every time new design (or infilling) points are sampled. 

Hence, to realize a fast design process, the model generation time should be considered. The 

time to construct (or reconstruct) the model is plotted against the size of the dataset. 
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6.6 Results and discussions 

6.6.1 Results for ADO-TA1 

Figure 6.1 shows the average HV history for solving the first problem. All the SBO 

methods achieve higher average HV value with significantly fewer CFD evaluations, compared 

to the NSGA-II-WS. Although there is not much difference in the average HV value obtained 

between the SBO methods, it is quite clear that EST-OK+GA performs the best. Using the EI 

acquisition function from the OK models gives a little improvement over the EST counterpart in 

the first iteration. However, as the iteration goes on, the EI-OK+GA performs the worst. Note 

that the future iterations are still unknown. 

 

Figure 6.1 Average HV history for ADO-TA1. 

 

From Figure 6.2(a), it is shown that most of the initial design points are in the low Cd 

region, hence the optimizers’ task is to expand the solutions to cover the high Cl region. Figure 

6.2(b). illustrates the attainment surface that is related to the average HV value. 
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(a) All solutions 

 

(b) Attainment surfaces 

Figure 6.2 Plots in the true objective space for ADO-TA1. 
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6.6.2 Results for ADO-TA2 

Figure 6.3 shows the average HV history for solving the second problem. Again, the SBO 

methods show that they are more efficient than the NSGA-II-WS. In this problem, NN+GA 

performs the worst, while EST-OK+GA once again performs the best, by achieving the average 

HV value of 0.90 with only 3 x 200 = 600 true evaluations. 

 

Figure 6.3 Average HV history for ADO-TA2 

From Figure 6.4(a), most of the initial design points are now located far from both 

extreme solutions, hence the optimizers’ task is to find and cover both extreme solutions. From 

Figure 6.4(b), it is observed that EI-OK+GA cannot find solutions that dominate the baseline 

(better in terms of both objectives). Note that NN+GA is given more budget to see how it can 

catch up with OK-based methods since it shows a poor performance with the same budget. 
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(a) All solutions 

 

(b) Attainment surfaces 

Figure 6.4 Plots in the true objective space for ADO-TA2 
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6.6.3 Results for ADO-TA3 

Figure 6.5 Shows the average HV history for solving the third problem. Now, only the 

SBO methods are compared, due to the budget limitation, since 1 true evaluation in this multi-

point problem includes the evaluation of 3 flight conditions. Figure 6.5 also agrees that EST-

OK+GA performs the best. In the first two iterations, EI-OK+GA performs better than NN+GA, 

the latter then surpasses the former’s performance in the next iterations. Again, EI does not give 

improvement over EST. 

 

Figure 6.5 Average HV history for ADO-TA3 

The initial design points are located far from both extreme solutions, as shown in Figure 

6.6(a). The attainment surface plot shows that all the SBO methods can find solutions that 

dominate the baseline. In this problem, many infeasible solutions are found since Cl constraints 

are introduced. No feasible solutions are found higher than −0.80 for the weighted sum of −Cl, 

due to these constraints. 
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(a) All solutions 

 

(b) Attainment surfaces 

Figure 6.6 Plots in the true objective space for ADO-TA3 
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6.6.4 Model generation time comparison 

The times associated with constructing the NN and OK models are plotted in Figure 6.7, 

against the size of the dataset. Note that the models are reconstructed when new sampled points 

are added to the dataset. The times are averaged among the three optimization runs. One cannot 

deny that the time for constructing OK models aggressively increases as the dataset grows. As 

for NN, it slowly increases. This is the reason why Kriging is often used in problems with small 

datasets. When it comes to big data (large datasets), NN is often deployed as the surrogate model. 

The OK models’ generation time is also influenced by the dimensionality of the problem. 

From Figures 6.7(a) and 6.7(b), it is observed that it needs a longer time to construct OK models 

when the dimensionality is higher (dimensionality: 18 in ADO-TA2 compared to 9 in ADO-

TA1). Note that both problems include the same number of OK models. As for the NN models, 

it is mainly influenced by the architecture of the network, e.g., the number of hidden neurons, 

type of network, etc. These different behaviors come from the way they are constructed. 

Constructing OK models includes the calculation of the inverse of matrix R, as in the equations 

(6-3) and (6-4). A matrix R is an n x n matrix, where n is the dimensionality. Constructing NN 

models includes simple algebraic calculations. The activation function is often simple as well, 

as in (2-4) and (2-5). However, these calculations must be done for every neuron in the network. 

Hence, having many neurons or deeper networks makes the NN model generation time longer. 

 

(a) ADO-TA1 
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(b) ADO-TA2 

 

 

(c) ADO-TA3 

 

Figure 6.7 Models’ generation time 
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6.6.5 Comparing NN and Kriging 

Using Kriging as the surrogate model in optimization tasks allows us to select various 

acquisition function types, thanks to the readily available uncertainty information in the Kriging. 

In NN, implementing uncertainty is not quite straightforward. Moreover, there are fewer 

parameters to be tuned when constructing Kriging (especially OK). On the other hand, 

parameterization in NN (especially MLP) is rather difficult when no optimization is done. 

EST-OK+GA performs the best in all the problems, in terms of search performance. It 

turns out that using EST rather than EI is enough to solve the current problems. One possible 

explanation is that the current problems are still categorized as simple problems with low 

dimensionality, in a way that applying EI as the acquisition functions might introduce a more 

complex and rugged search space for the optimizer. Another explanation is that the techniques 

of creating EI for every objective function as in [28], rather than creating a single EI for all 

objectives (converting MOPs into SOPs), should be further justified and studied. Although EST-

OK+GA performs better than NN+GA in the current problems, it is still hard to say that Kriging 

is better than NN in all types of aerodynamic design optimization problems, especially when 

dealing with high dimensionality (>100) problems. Díaz-Manríquez et al. in [32] suggest that 

Kriging is the best approach to be used only in low dimensionality problems since the accuracy 

deteriorates as the dimensionality increases. 

In the present chapter, only MLP and OK are used to represent NN and Kriging, 

respectively. However, there are many variants of them, e.g., RBNN, Universal Kriging, etc. 

Another weakness of the present NN training is that no optimization is done on selecting the 

training parameters. Thus, the optimized and the best architecture is unknown. Despite all that, 

NN offers simplicity when it comes to constructing the surrogate model. In contrast to Kriging, 

many variables input and multiple functions output can be modeled in a single NN model. 
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6.7 Summary 

In this chapter, Kriging and neural network (NN) were combined with NSGA-II to solve 

three different multi-objective aerodynamic design optimization of transonic airfoil problems. 

Three SBO methods with different acquisition functions provided by the models were used: 

EST-OK+GA, EI-OK+GA, and NN+GA. NSGA-II without surrogates (NSGA-II-WS) was also 

done to solve the first two problems. It was shown that EST-OK+GA performed the best in all 

the problems, and all the SBO methods are superior to NSGA-II-WS, highlighting their 

efficiency. 

Considering the model generation time, unlike NN, Kriging is not suited to deal with 

large datasets. In high dimensionality problems (>100) with multiple black-box functions, it is 

also not recommended to use Kriging. Unless parallel computation is feasible, it can be time-

consuming to construct multiple Kriging models for multiple black-box functions to 

approximate. However, in simple problems with low dimensionality (<100) as in this paper, 

Kriging model generation time is still reasonably short, while giving the best search 

performance (using EST). In this paper, only aerodynamic design optimization problems with 

low dimensionality (<100) were introduced to compare between Kriging and NN. It is therefore 

impossible to discuss the search performance scalability, that is the performance when applied 

to high dimensionality problems. To compare the methods in high dimensionality aerodynamic 

design problems is thus subject to future works. 
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Conclusion 

 

To aid the process of design optimization that often includes expensive evaluations, 

surrogate models have been used over decades. One of the types of surrogate models that has 

grown recently is the artificial neural network (ANN). The surrogate models are often coupled 

with various types of population-based optimization algorithms, such as evolutionary 

algorithms (EAs). One variant of them is a genetic algorithm called NSGA-II. 

In this thesis, I studied the feasibility and the efficacy of integrating ANN into NSGA-II 

(we call it NN+GA). The whole framework of optimization of NN+GA has also been proposed, 

utilizing supervised and unsupervised machine learning techniques. The NN+GA was first 

applied to test problems with various complexities, including single- and multi-objective 

optimization test problems. It was found that NN+GA can cut the number of true function 

evaluations, that is expected to be useful for expensive optimization problems. 

The investigation continues by applying the NN+GA to a real-world problem, i.e., multi-

objective aerodynamic shape optimization of transonic airfoils. The optimization includes three 

different problem definitions. It was found that integrating ANN into NSGA-II is more efficient 

than directly using NSGA-II with true evaluations, in the given aerodynamic design problems. 

NN+GA can cut the computational time for around 48 and 90 hours, by replacing the CFD 

evaluations in the optimization procedure. In other words, ANN can map non-linear functions 

and is sufficient to be a surrogate model that can replace CFD in the optimization procedure. 

Lastly, ANN is compared with the most popular surrogate model in the field of aerospace 

engineering: Kriging. Some advantages and disadvantages of using ANN and Kriging surrogate 

models for aerodynamic design optimization were discussed. The comparison also includes 

three different acquisition functions when solving multi-objective aerodynamic design 

optimization of transonic airfoils. Kriging was shown to be more efficient than ANN in the 

current low-dimensionality and low-fidelity design problems. However, the performance 

scalability in the high-dimensionality problems is subject to future research. 
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