On the Use of a Multilayer Perceptron as an Aerodynamic Performance Approximator in Multi-Objective Transonic Airfoil Shape Optimization

Muhammad Alfiyandy Hariansyah ${ }^{1,2}$, Koji Shimoyama ${ }^{1}$

${ }^{1}$ Institute of Fluid Science, Tohoku University
Contacts:
${ }^{2}$ Department of Aerospace Engineering, Tohoku University
muhammad.alfiyandy.hariansyah.s8@dc.tohoku.ac.jp shimoyama@tohoku.ac.jp

Background

Aerodynamic shape optimization of transonic
airfoils (ASO-TA) is important.
> Most of commercial aircrafts today cruise at transonic speeds, near the speed of sound. - The shape of airfoil section strongly affects the aerodynamic characteristics.

The aerodynamic shape optimization has used multi-objective evolutionary algorithms (MOEAs), e.g., NSGA-II [1].
> NSGA-II requires numerous evaluations.
> CFD evaluations are expensive!
CFD is replaced with a surrogate model.
Multilayer perceptron (MLP) can do mapping between many design variables (input) and multiple functions (output) in a single model. > Kriging [2] is the most popular surrogates. > But, one Kriging can only map one function. > MLP has the potential to be used in highdimensional problems
 https://www.ana.co.jp/en/

ardid

EAs are inspired by the biological evolution

Kriging (left), Multilayer perceptron (right)

Objectives

Develop a multilayer perceptron-assisted
NSGA-II algorithm (MLP+GA)
> MLP is used to assist the NSGA-II optimization process.

Apply MLP+GA to multi-objective transonic airfoil shape optimization with low to moderate dimensionality
> The use of MLP as an aerodynamic performance approximator is studied
> This describes a preliminary study before the MLP+GA is used in high dimensional problems.

Compare the results with NSGA-II algorithms without surrogates
> Standard NSGA-II with CFD as its true evaluation is carried out.
Investigate whether the use of MLP makes the NSGA-II optimization process more efficient.

Methodologies

Optimization results

B-Spline and PARSEC [3] for parameterization Latin hypercube sampling for initial designs Every algorithm starts with $\mathbf{1 0 0}$ initial designs Euler-based CFD solved using SU2 [4] K-Means algorithm as the infilling criteria (solutions closest to the centroids are chosen)

NSGA-II with different settings ($2^{\text {nd }}, 3^{\text {rrd }}$ and $4^{\text {th }}$ algo)

	$2^{\text {nd }}$ algo	$3^{\text {rd }}$ algo	$4^{\text {th }}$ algo
$\begin{aligned} & \hline \text { Pop size } \\ & \text { (P1, P2) } \end{aligned}$	100	20	20
Pop size (P3)	100	10	10
$\begin{gathered} n_{\text {gen_max }} \\ (\mathrm{P} 1, \mathrm{P} 2) \end{gathered}$	10	11	11
$\begin{gathered} n_{\text {gen_max }} \\ (\mathrm{P} 3) \\ \hline \end{gathered}$	10	31	31
Crossover	$\begin{gathered} \eta_{c}=15 \\ \text { rate }=0.9 \end{gathered}$	$\begin{gathered} \eta_{c}=15 \\ \text { rate }=0.9 \end{gathered}$	$\begin{gathered} \eta_{c}=15 \\ \text { rate }=0.9 \end{gathered}$
Mutation	$\begin{gathered} \eta_{c}=20 \\ r=1 / 100 \end{gathered}$	$\begin{aligned} \eta_{c} & =20 \\ r_{1,2} & =1 / 20 \\ r_{3} & =1 / 10 \end{aligned}$	$\begin{aligned} \eta_{c} & =20 \\ r_{1,2} & =1 / 20 \\ r_{3} & =1 / 10 \end{aligned}$
Initial pop	LHS samples	K-Means on \boldsymbol{x}	K-Means on f

Note: P1, P2, P3 stand for problem 1, 2 and 3
The $3^{\text {rd }}$ and $4^{\text {th }}$ algorithm are done to make a fair comparison with MLP+GA with the same number of new designs per iteration.

Note NDS: Non-dominated solutions *The Euler CFD solvers are not realistic, however we focus on the algorithm performance comparison
ASO-TA2 regions because the Mach number increases. MLP+GA is 48 hours faster than NSGA-II Extreme

ASO-TA3

The most complex problem with constraints Some solutions are infeasible
Both MLP+GA and NSGA-II can find better objectives than the baseline (RAE2822 airfoil) MLP+GA is $\mathbf{9 0}$ hours faster than NSGA-II

Problem definition

Aerodynamic Shape Optimization of Transonic Airfoils (ASO-TA)

ASO-TA1 (2 objectives, 0 constraint, 9 variables) minimize $\quad: C_{d}$ and $-C_{l}$ with respect to : PARSEC variables subject to
flow conditions : Mach 0.73, Angle of Attack $=2^{\circ}$
ASO-TA2 (2 objectives, 0 constraint, 9 variables) minimize $\quad: C_{d}$ and $-C_{l}$ with respect to : PARSEC variables subject to
flow conditions : Mach 0.80, Angle of Attack $=2^{\circ}$
ASO-TA3 (2 objectives, 3 constraints, 18 variables) minimize $\quad: C_{d}$ and $-C_{l}$
with respect to : B -Spline control points
subject to $\quad: 0.8 * A_{\text {baseline }}-A \leq 0$
$Y_{1}-Y_{18} \leq 0$
$Y_{2}-Y_{17} \leq 0$
flow conditions : Mach 0.73, Angle of Attack $=2^{\circ}$
Airfoil Parameterization

Performance comparison

Hypervolume metric

ASO-TA1
It measures proximity and diversity of nondominated solutions Higher HV, the better HV is plotted vs the number of CFD evals ASO-TA2

Conclusion and future works

[^0]
[^0]: An optimization method called MLP+GA is proposed MLP+GA and NSGA-II with different settings can find sets of non-dominated solutions
 MLP+GA can find higher HV solutions with significantly fewer CFD evaluations.
 MLP+GA cuts the computational time, indicating that the MLP is sufficient as the aerodynamic performance approximator and makes the genetic algorithm more efficient.
 MLP+GA has the potential to be applied to high dimensional design optimization problems with multiple objectives.

