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 Aerodynamic shape optimization of transonic
airfoils (ASO-TA) is important.
» Most of commercial aircrafts today cruise at

transonic speeds, near the speed of sound.

» The shape of airfoil section strongly affects

the aerodynamic characteristics.

* The aerodynamic shape optimization has used
multi-objective evolutionary algorithms
(MOEASs), e.g., NSGA-II [1].

» NSGA-Il requires numerous evaluations.
» CFD evaluations are expensive!
» CFD is replaced with a surrogate model.

 Multilayer perceptron (MLP) can do mapping
between many design variables (input) and
multiple functions (output) in a single model.
» Kriging [2] is the most popular surrogates.
» But, one Kriging can only map one function.
» MLP has the potential to be used in high-

dimensional problems
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EAs are inspired by the biological evolution
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Kriging (left), Multilayer perceptron (right)

MLP+GA (15t algo) applied to multi-objective transonic airfoil shape optimization
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Develop a multilayer perceptron-assisted
NSGA-II algorithm (MLP+GA)
» MLP is used to assist the NSGA-II

optimization process.

Apply MLP+GA to multi-objective transonic

airfoil shape optimization with low to

moderate dimensionality

» The use of MLP as an aerodynamic
performance approximator is studied.

» This describes a preliminary study
before the MLP+GA is used in high
dimensional problems.

Compare the results with NSGA-II

algorithms without surrogates

» Standard NSGA-II with CFD as its true
evaluation is carried out.

» |Investigate whether the use of MLP
makes the NSGA-II optimization process
more efficient.

NSGA-II with different settings (2"¢, 34 and 4" algo)

8. Stopping
Criteria

10. Pareto-Optimal
Approximations

7. Infilling Criteria

 B-Spline and PARSEC [3] for parameterization
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6. Multi-objective optimization
using NSGA-Il on the MLP model
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Number of CFD evaluations

e Latin hypercube sampling for initial designs

* Every algorithm starts with 100 initial designs

* Euler-based CFD solved using SU2 [4]

 K-Means algorithm as the infilling criteria
(solutions closest to the centroids are chosen)

MLP+GA

NSGA-II 2d
NSGA-I| 3

; : 100 + 20*5 :
- NSGA-I1 1t : 100 + 100*9 = 1000
5 : 100 + 20*10 = 300 |
: 100 + 20*10 = 300

=200

.................................................................................................

Optimization results

Pop size
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Note: P1, P2, P3 stand for problem 1, 2 and 3

 The 39 and 4t algorithm are done to make a fair
comparison with MLP+GA with the same
number of new designs per iteration.

Note NDS: Non-dominated solutions

*The Euler CFD solvers are not realistic, however we focus on the algorithm performance comparison

ASO-TA3

* The most complex problem with constraints

 Some solutions are infeasible.

 Both MLP+GA and NSGA-II can find better
objectives than the baseline (RAE2822 airfoil)

e MLP+GA is 90 hours faster than NSGA-II

Extreme

Cd

ASO-TA1l ASO-TA2
* The initial designs are mostly located in the * The optimizer task is to find both extreme
low Cd region (Cl between 0.4 and 0.6). regions because the Mach number increases.
e MLP+GA is 48 hours faster than NSGA-I| e MLP+GA is 48 hours faster than NSGA-I|
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Problem definition

Aerodynamic Shape Optimization of Transonic Airfoils

(ASO-TA)

 ASO-TA1 (2 objectives, 0 constraint, 9 variables)

minimize

with respect to

subject to

flow conditions

. Cd and _Cl
: PARSEC variables

: Mach 0.73, Angle of Attack = 2°

 ASO-TA2 (2 objectives, 0 constraint, 9 variables)

minimize

with respect to

subject to

flow conditions

. Cd and _Cl
: PARSEC variables

: Mach 0.80, Angle of Attack = 2°

 ASO-TA3 (2 objectives, 3 constraints, 18 variables)

minimize

with respect to

subject to

. Cd and _Cl
: B-Spline control points
1 0.8 * Apgsetine —4 =0

Y, — Y, <0

flow conditions : Mach 0.73, Angle of Attack = 2°

Airfoil Parameterization

o var | s | vn.
Y
1.

PARSEC

rg  0.0065  0.0092
BN Xx,, 03466 05198 K v
EN v, 00503 00755 . (" N
Yixup -0.5094  -0.3396 \
BN x,, 02894  0.4342
Y,, -0.0707 -0.0471 o
M Y, 05655  0.8483 Note: The airfoils have
arg  -0.1351  -0.0901 a sharp trailing edge
EN Bz 01317  0.1975
B-Spline
' No | X |Var| LB. | UB. |
BFHN 0928864 Y;  -0.009306 0.010694  RAE289 UILC data
WA 0853553 ¥, -0.024314 0.015686 —-- B-Spline Max
BEWN 0.777785 Y,  -0.032689 0.007310 s B-Spline Min
W 0668445 Y, -0.048139 -0.007814 OO
BN 0.549009 Y:  -0.064642 -0.024642
B 0.426635 Y, -0.076979 -0.036979
WA 0.308658 Y, -0.078459 -0.038459
B 0.202150 Y,  -0.071694 -0.031694
BERN 0.071136 Y, -0.053169 -0.013169
BTM 0.071136 Y,, 0.012644 0.052644
BFW 0.202150 Y,; 0.031885 0.071885
BFM 0.308658 Y;, 0.039629 0.079629
WEW 0.426635 Y,; 0.042779 0.082779 ,
BTW 0540009 v,, 0040194 o.0so194a INote:Yis the control
BN 0.668445 Y,: 0.030993 0.070993 point y-coordinates
BTW 0.777785 Y, 0.017847 0.057847 T '
BEA 0853553 ¥,, 0.065540 0.046554 The baselineis
BTN 0928864 Y, 0.037689 0.023769

RAE2822 airfoil!

Performance comparison

Hypervolume metric
* |t measures proximity

and diversity of non-

dominated solutions
* Higher HV, the better ¢
 HVis plotted vs the

number of CFD evals

ASO-TA2
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Conclusion and future works

* An optimization method called MLP+GA is proposed

e MLP+GA and NSGA-II with different settings can
find sets of non-dominated solutions.

e MLP+GA can find higher HV solutions with
significantly fewer CFD evaluations.

* MLP+GA cuts the computational time, indicating
that the MLP is sufficient as the aerodynamic
performance approximator and makes the genetic
algorithm more efficient.

* MLP+GA has the potential to be applied to high
dimensional design optimization problems with

multiple objectives.
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