Optimization of Structural Layout for Composite Aircraft Wings

Yuta Inaba*, Shugo Date, Hariansyah Muhammad Alfyandy, Yoshiaki Abe, Koji Shimoyama, Tomonaga Okabe, Shigeru Obayashi (Tohoku University)

Background

Future Aircrafts

- New structure
- Next-generation material Carbon Fiber Reinforced Plastics (CFRP)

Desired technology

Computer Aided Engineering

Optimization Multi-variable multi-purpose Search for global solution

In this study…

- Computational Fluid Dynamics (CFD) & Finite Elemental Analysis (FEA)
- Practical multi-variable & multi-purpose optimization
 Structure layout of main wing
- Genetic Algorithm (GA) combined with Neural Network (NN)

Problem setting

Static aeroelastic sizing method

Sizing method

- Bidirectional fluid-structure coupling for Static aeroelastic analysis
- Structural sizing of main wing by the fully stressed design method as follows.

$$g_{k+1} = g_k \left(\frac{1.0 + \overline{ms}}{1.0 + ms_k}\right)^{\beta}$$

g: Thickness or cross-sectional area of each parts

k: Iteration

- \overline{ms} : Target margin of safety ($\overline{ms} = 0.05$)
- ms_k : Margin of safety in the current iteration

Main wing model

Based on Boeing 777 Semispan: 28m Receding angle 34°

Material:CFRP Fiber:T800S

Flight Condition

Mach 0.84 C_L Target : 0.5

Optimization Settings

- Design variables Layout of ribs & stringers
- Objective functions

Total weight & Number of parts

• GA

250 generations \times 50 individuals

NN
 50 initial samples
 + 5 additional samples
 × 5 updates

GA+NN method

Optimization method

- GA combined with NN (GA+NN)
- Surrogate model using NN to reduce computational complexity

1st NN Update

2nd or later NN Update

The lightest structure in the static aeroelastic equilibrium can be obtained with these loops.

GA+NN analysis

- Spars, skin and ribs are modeled is optimized in order to reduce the number of elements in the model.
- Strength of the stringers is taken into account by setting the skin thickness to the effective cross-sectional area.

- 10000 0 20 40 60 80 100 equal intervals. Number of Ribs
- Limited design space to 25 or more ribs due to modeling problem
- No trade-off between weight and the number of parts

Need more accurate model and suitable objective function

Ongoing work

- Stringers in addition to spars, skin and ribs are modeled
- The number of elements of Finite Element Model is 2401 while it is 688 for the conventional model
- The skin weight of the legacy model is multiplied in consideration of the effective cross-sectional area described above.

- Simulate static aeroelastic sizing on all individuals of 1st updates
- Simulate on only 5 appropriately extracted individuals after 2nd updates
- The computational complexity can be reduced by substituting NN inference for Static aeroelastic sizing which has a large complexity.
- Optimal solution obtained with GA+NN is often superior to one with pure GA because NN prediction is cheap evaluation and has a small computational complexity, therefore more generations can be executed.
- New model is slightly lighter than legacy model
- Weight of stringers has a large effect
- More accurate by modeling stringers

We will optimize layout of ribs and stringers with this new model.